Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems with continuous potentials
In this paper, we consider the following nonlinear coupled elliptic systems with continuous potentials: { − ε 2 Δ u + ( 1 + δ P ( x ) ) u = μ 1 u 3 + β u v 2 i n Ω , − ε 2 Δ v + ( 1 + δ Q ( x ) ) u = μ 2 u 3 + β u 2 v i n Ω , u > 0 , v > 0 i n Ω , ∂ u ∂ v = ∂ u ∂ v = 0 o n ∂ Ω , where Ω is a s...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2019-03, Vol.62 (3), p.509-534 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following nonlinear coupled elliptic systems with continuous potentials:
{
−
ε
2
Δ
u
+
(
1
+
δ
P
(
x
)
)
u
=
μ
1
u
3
+
β
u
v
2
i
n
Ω
,
−
ε
2
Δ
v
+
(
1
+
δ
Q
(
x
)
)
u
=
μ
2
u
3
+
β
u
2
v
i
n
Ω
,
u
>
0
,
v
>
0
i
n
Ω
,
∂
u
∂
v
=
∂
u
∂
v
=
0
o
n
∂
Ω
,
where Ω is a smooth bounded domain in ℝ
N
for
N
= 2, 3,
δ
,
ε
,
μ
1
and
μ
2
are positive parameters,
β
∈ ℝ,
P
(
x
) and
Q
(
x
) are two smooth potentials defined on
Ω
¯
, the closure of Ω. Due to Liapunov-Schmidt reduction method, we prove that (
A
ε
) has at least
O
(1/(
ε
|ln
ε
|)
N
) synchronized and
O
(1/(
ε
|ln
ε
|)
2
N
) segregated vector solutions for
ε
and
δ
small enough and some
β
∈ ℝ. Moreover, for each
m
∈ (0,
N
) there exist synchronized and segregated vector solutions for (
A
ε
) with energies in the order of
ε
N
-
m
. Our results extend the result of Lin et al. (2007) from the Lin-Ni-Takagi problem to the nonlinear Schrödinger elliptic systems with continuous potentials. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-017-9098-9 |