Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis
Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-10, Vol.64 (10), p.8148-8157 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8157 |
---|---|
container_issue | 10 |
container_start_page | 8148 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Qingchao Jiang Ding, Steven X. Yang Wang Xuefeng Yan |
description | Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach. |
doi_str_mv | 10.1109/TIE.2017.2698422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174408175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7913603</ieee_id><sourcerecordid>2174408175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlN3stlscqxt_YCC4sc5TLYT3RKzdXcj6NFfbmqLp4GZ530ZHsbOQIwBRHn5fDcfpwL0OM3LIkvTPTYCpXRSllmxz0Yi1UUiRJYfsqMQVkJApkCN2M8MIyYzbz-p4zMbord1H2nJF85gy6-xbyOfUSQTret44zxfoH-l5Gk4E3_wzlAIFPgVhiE1IPGN-M0keaTXvkVvv4ftFDvX2U3f1HlPLf51TTpsv4INJ-ygwTbQ6W4es5fr-fP0Nlnc39xNJ4vESKVjAkDLWgCCIEQoCyxJqUJqg3UNBkQtoSaZ63ppikI2kAOgUWVTN8s0R5HJY3ax7V1799FTiNXK9X54IlQp6CwTBWg1UGJLGe9C8NRUa2_f0X9VIKqN6WowXW1MVzvTQ-R8G7FE9I_rEmQupPwFywt7GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174408175</pqid></control><display><type>article</type><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</creator><creatorcontrib>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</creatorcontrib><description>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2698422</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Canonical correlation analysis (CCA) ; Correlation ; Correlation analysis ; Covariance matrices ; distributed fault detection ; Fault detection ; genetic algorithm (GA) ; Genetic algorithms ; large-scale processes ; Monitoring ; Process control ; Subsystems</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-10, Vol.64 (10), p.8148-8157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</citedby><cites>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7913603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7913603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qingchao Jiang</creatorcontrib><creatorcontrib>Ding, Steven X.</creatorcontrib><creatorcontrib>Yang Wang</creatorcontrib><creatorcontrib>Xuefeng Yan</creatorcontrib><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</description><subject>Benchmark testing</subject><subject>Canonical correlation analysis (CCA)</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Covariance matrices</subject><subject>distributed fault detection</subject><subject>Fault detection</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>large-scale processes</subject><subject>Monitoring</subject><subject>Process control</subject><subject>Subsystems</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlN3stlscqxt_YCC4sc5TLYT3RKzdXcj6NFfbmqLp4GZ530ZHsbOQIwBRHn5fDcfpwL0OM3LIkvTPTYCpXRSllmxz0Yi1UUiRJYfsqMQVkJApkCN2M8MIyYzbz-p4zMbord1H2nJF85gy6-xbyOfUSQTret44zxfoH-l5Gk4E3_wzlAIFPgVhiE1IPGN-M0keaTXvkVvv4ftFDvX2U3f1HlPLf51TTpsv4INJ-ygwTbQ6W4es5fr-fP0Nlnc39xNJ4vESKVjAkDLWgCCIEQoCyxJqUJqg3UNBkQtoSaZ63ppikI2kAOgUWVTN8s0R5HJY3ax7V1799FTiNXK9X54IlQp6CwTBWg1UGJLGe9C8NRUa2_f0X9VIKqN6WowXW1MVzvTQ-R8G7FE9I_rEmQupPwFywt7GQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Qingchao Jiang</creator><creator>Ding, Steven X.</creator><creator>Yang Wang</creator><creator>Xuefeng Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201710</creationdate><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><author>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmark testing</topic><topic>Canonical correlation analysis (CCA)</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Covariance matrices</topic><topic>distributed fault detection</topic><topic>Fault detection</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>large-scale processes</topic><topic>Monitoring</topic><topic>Process control</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qingchao Jiang</creatorcontrib><creatorcontrib>Ding, Steven X.</creatorcontrib><creatorcontrib>Yang Wang</creatorcontrib><creatorcontrib>Xuefeng Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qingchao Jiang</au><au>Ding, Steven X.</au><au>Yang Wang</au><au>Xuefeng Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-10</date><risdate>2017</risdate><volume>64</volume><issue>10</issue><spage>8148</spage><epage>8157</epage><pages>8148-8157</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2698422</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-10, Vol.64 (10), p.8148-8157 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2174408175 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Canonical correlation analysis (CCA) Correlation Correlation analysis Covariance matrices distributed fault detection Fault detection genetic algorithm (GA) Genetic algorithms large-scale processes Monitoring Process control Subsystems |
title | Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Distributed%20Local%20Fault%20Detection%20for%20Large-Scale%20Processes%20Based%20on%20the%20GA-Regularized%20Canonical%20Correlation%20Analysis&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Qingchao%20Jiang&rft.date=2017-10&rft.volume=64&rft.issue=10&rft.spage=8148&rft.epage=8157&rft.pages=8148-8157&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2698422&rft_dat=%3Cproquest_RIE%3E2174408175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174408175&rft_id=info:pmid/&rft_ieee_id=7913603&rfr_iscdi=true |