Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis

Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-10, Vol.64 (10), p.8148-8157
Hauptverfasser: Qingchao Jiang, Ding, Steven X., Yang Wang, Xuefeng Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8157
container_issue 10
container_start_page 8148
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Qingchao Jiang
Ding, Steven X.
Yang Wang
Xuefeng Yan
description Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.
doi_str_mv 10.1109/TIE.2017.2698422
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174408175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7913603</ieee_id><sourcerecordid>2174408175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlN3stlscqxt_YCC4sc5TLYT3RKzdXcj6NFfbmqLp4GZ530ZHsbOQIwBRHn5fDcfpwL0OM3LIkvTPTYCpXRSllmxz0Yi1UUiRJYfsqMQVkJApkCN2M8MIyYzbz-p4zMbord1H2nJF85gy6-xbyOfUSQTret44zxfoH-l5Gk4E3_wzlAIFPgVhiE1IPGN-M0keaTXvkVvv4ftFDvX2U3f1HlPLf51TTpsv4INJ-ygwTbQ6W4es5fr-fP0Nlnc39xNJ4vESKVjAkDLWgCCIEQoCyxJqUJqg3UNBkQtoSaZ63ppikI2kAOgUWVTN8s0R5HJY3ax7V1799FTiNXK9X54IlQp6CwTBWg1UGJLGe9C8NRUa2_f0X9VIKqN6WowXW1MVzvTQ-R8G7FE9I_rEmQupPwFywt7GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174408175</pqid></control><display><type>article</type><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</creator><creatorcontrib>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</creatorcontrib><description>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2698422</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Canonical correlation analysis (CCA) ; Correlation ; Correlation analysis ; Covariance matrices ; distributed fault detection ; Fault detection ; genetic algorithm (GA) ; Genetic algorithms ; large-scale processes ; Monitoring ; Process control ; Subsystems</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-10, Vol.64 (10), p.8148-8157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</citedby><cites>FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7913603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7913603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qingchao Jiang</creatorcontrib><creatorcontrib>Ding, Steven X.</creatorcontrib><creatorcontrib>Yang Wang</creatorcontrib><creatorcontrib>Xuefeng Yan</creatorcontrib><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</description><subject>Benchmark testing</subject><subject>Canonical correlation analysis (CCA)</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Covariance matrices</subject><subject>distributed fault detection</subject><subject>Fault detection</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>large-scale processes</subject><subject>Monitoring</subject><subject>Process control</subject><subject>Subsystems</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlN3stlscqxt_YCC4sc5TLYT3RKzdXcj6NFfbmqLp4GZ530ZHsbOQIwBRHn5fDcfpwL0OM3LIkvTPTYCpXRSllmxz0Yi1UUiRJYfsqMQVkJApkCN2M8MIyYzbz-p4zMbord1H2nJF85gy6-xbyOfUSQTret44zxfoH-l5Gk4E3_wzlAIFPgVhiE1IPGN-M0keaTXvkVvv4ftFDvX2U3f1HlPLf51TTpsv4INJ-ygwTbQ6W4es5fr-fP0Nlnc39xNJ4vESKVjAkDLWgCCIEQoCyxJqUJqg3UNBkQtoSaZ63ppikI2kAOgUWVTN8s0R5HJY3ax7V1799FTiNXK9X54IlQp6CwTBWg1UGJLGe9C8NRUa2_f0X9VIKqN6WowXW1MVzvTQ-R8G7FE9I_rEmQupPwFywt7GQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Qingchao Jiang</creator><creator>Ding, Steven X.</creator><creator>Yang Wang</creator><creator>Xuefeng Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201710</creationdate><title>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</title><author>Qingchao Jiang ; Ding, Steven X. ; Yang Wang ; Xuefeng Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-11edb01a10eaa198a9e55837cabb1c10b31be367bdc883f1611ac59fbfd26a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmark testing</topic><topic>Canonical correlation analysis (CCA)</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Covariance matrices</topic><topic>distributed fault detection</topic><topic>Fault detection</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>large-scale processes</topic><topic>Monitoring</topic><topic>Process control</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qingchao Jiang</creatorcontrib><creatorcontrib>Ding, Steven X.</creatorcontrib><creatorcontrib>Yang Wang</creatorcontrib><creatorcontrib>Xuefeng Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qingchao Jiang</au><au>Ding, Steven X.</au><au>Yang Wang</au><au>Xuefeng Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-10</date><risdate>2017</risdate><volume>64</volume><issue>10</issue><spage>8148</spage><epage>8157</epage><pages>8148-8157</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2698422</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-10, Vol.64 (10), p.8148-8157
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2174408175
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Canonical correlation analysis (CCA)
Correlation
Correlation analysis
Covariance matrices
distributed fault detection
Fault detection
genetic algorithm (GA)
Genetic algorithms
large-scale processes
Monitoring
Process control
Subsystems
title Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Distributed%20Local%20Fault%20Detection%20for%20Large-Scale%20Processes%20Based%20on%20the%20GA-Regularized%20Canonical%20Correlation%20Analysis&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Qingchao%20Jiang&rft.date=2017-10&rft.volume=64&rft.issue=10&rft.spage=8148&rft.epage=8157&rft.pages=8148-8157&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2698422&rft_dat=%3Cproquest_RIE%3E2174408175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174408175&rft_id=info:pmid/&rft_ieee_id=7913603&rfr_iscdi=true