Data-Driven Distributed Local Fault Detection for Large-Scale Processes Based on the GA-Regularized Canonical Correlation Analysis

Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-10, Vol.64 (10), p.8148-8157
Hauptverfasser: Qingchao Jiang, Ding, Steven X., Yang Wang, Xuefeng Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale processes have become common, and fault detection for such processes is imperative. This work studies the data-driven distributed local fault detection problem for large-scale processes with interconnected subsystems and develops a genetic algorithm (GA)-regularized canonical correlation analysis (CCA)-based distributed local fault detection scheme. For each subsystem, the GA-regularized CCA is first performed with its all coupled systems, which aims to preserve the maximum correlation with the minimal communication cost. A CCA-based residual is then generated, and corresponding statistic is constructed to achieve optimal fault detection for the subsystem. The distributed fault detector performs local fault detection for each subsystem using its own measurements and the information provided by its coupled subsystems and therefore exhibits a superior monitoring performance. The regularized CCA-based distributed fault detection approach is tested on a numerical example and the Tennessee Eastman benchmark process. Monitoring results indicate the efficiency and feasibility of the proposed approach.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2017.2698422