LCL Filter Design of a 50-kW 60-kHz SiC Inverter with Size and Thermal Considerations for Aerospace Applications
To achieve high power density, increasing the switching frequency of the power converter has become a trend. The LCL filter is a major contributor of the overall weight of a high-power-density converter (HPDC), especially the inverter-side inductor, which requires to suppress higher frequency harmon...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-10, Vol.64 (10), p.8321-8333 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To achieve high power density, increasing the switching frequency of the power converter has become a trend. The LCL filter is a major contributor of the overall weight of a high-power-density converter (HPDC), especially the inverter-side inductor, which requires to suppress higher frequency harmonic contents at the inverter side. This paper describes a comprehensive design flow of the LCL filter for a 50-kW, 60-kHz two-level silicon carbide (SiC) inverter for high-power aerospace applications with space constraint and harsh ambient temperature environment. To meet the space constraint requirement and reduce the inductor size, specific design attention is made on a customized amorphous cored inductor with a comprehensive study on the relationships of inductor weight, core width, and total surface area with respect to air gap length. To overcome the harsh ambient temperature environment, a liquid cooling system of the amorphous cored inductor is also described. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2677338 |