Thrust, drag and wake structure in flapping compliant membrane wings
We present a theoretical framework to characterize the steady and unsteady aeroelastic behaviour of compliant membrane wings under different conditions. We develop an analytic model based on thin airfoil theory coupled with a membrane equation. Adopting a numerical solution to the model equations, w...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-03, Vol.862, p.871-888 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a theoretical framework to characterize the steady and unsteady aeroelastic behaviour of compliant membrane wings under different conditions. We develop an analytic model based on thin airfoil theory coupled with a membrane equation. Adopting a numerical solution to the model equations, we study the effects of wing compliance, inertia and flapping kinematics on aerodynamic performance. The effects of added mass and fluid damping on a flapping membrane are quantified using a simple damped oscillator model. As the flapping frequency is increased, membranes go through a transition from thrust to drag around the resonant frequency, and this transition is earlier for more compliant membranes. The wake also undergoes a transition from a reverse von Kármán wake to a traditional von Kármán wake. The wake transition frequency is predicted to be higher than the thrust–drag transition frequency for highly compliant wings. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2018.966 |