Mach stem deformation in pseudo-steady shock wave reflections
The deformation of the Mach stem in pseudo-steady shock wave reflections is investigated numerically and theoretically. The numerical simulation provides the typical flow patterns of Mach stem deformation and reveals the differences caused by high-temperature gas effects. The results also show that...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-02, Vol.861, p.407-421 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deformation of the Mach stem in pseudo-steady shock wave reflections is investigated numerically and theoretically. The numerical simulation provides the typical flow patterns of Mach stem deformation and reveals the differences caused by high-temperature gas effects. The results also show that the wall jet, which causes Mach stem deformation, can be regarded as a branch of the mainstream from the first reflected shock. A new theoretical model for predicting the Mach stem deformation is developed by considering volume conservation. The theoretical predictions agree well with the numerical results in a wide range of test conditions. With this model, the wall-jet velocity and the inflow velocity from the Mach stem are identified as the two dominating factors that convey the influence of high-temperature thermodynamics. The mechanism of high-temperature gas effects on the Mach stem deformation phenomenon are then discussed. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2018.920 |