High-Power High-Isolation RF-MEMS Switches With Enhanced Hot-Switching Reliability Using a Shunt Protection Technique

This paper presents a shunt protection technique to improve the hot-switching reliability of metal-contact radio-frequency microelectromechanical systems (RF-MEMS) switches. The proposed technique places shunt protection contacts in front of the main contact of an RF-MEMS metal contact switch to blo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2017-09, Vol.65 (9), p.3188-3199
Hauptverfasser: Yuhao Liu, Bey, Yusha, Xiaoguang Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a shunt protection technique to improve the hot-switching reliability of metal-contact radio-frequency microelectromechanical systems (RF-MEMS) switches. The proposed technique places shunt protection contacts in front of the main contact of an RF-MEMS metal contact switch to block RF signal while the main contact is switching ON or OFF. The shunt protection contact creates a local cold-switching condition for the main contact to increase the lifetime of the switch under hot-switching condition. The shunt protection technique can also increase the overall isolation of the switch. To demonstrate the technique, RF-MEMS switches with and without shunt protection were fabricated using all metal process. Compared with the unprotected switch, the protected switch has longer lifetime under hot-switching condition. The protected switch has >100-million cycles and up to 500-million cycles lifetime under the 1-W hot-switching condition, measured in open-air laboratory environment. Besides, the isolation of the shunt-protected switch is 70 dB at 1.0 GHz and 36 dB at 40 GHz, and the insertion loss is 0.30 dB at 1.0 GHz and 0.43 dB at 40 GHz.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2017.2687427