Pressure-Induced Electronic and Structural Phase Evolution in the van der Waals Compound FePS^sub 3

Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. Here we present work on a new metal-to-insulator transition system FePS3. This compound is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-12, Vol.121 (26), p.266801
Hauptverfasser: Haines, C R S, Coak, M J, Wildes, A R, Lampronti, G I, Liu, C, Nahai-Williamson, P, Hamidov, H, Daisenberger, D, Saxena, S Saxena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. Here we present work on a new metal-to-insulator transition system FePS3. This compound is a two-dimensional van der Waals antiferromagnetic Mott insulator. We report the discovery of an insulator-metal transition in FePS3, as evidenced by x-ray diffraction and electrical transport measurements, using high pressure as a tuning parameter. Two structural phase transitions are observed in the x-ray diffraction data as a function of pressure, and resistivity measurements show evidence of the onset of a metallic state at high pressures. We propose models for the two new structures that can successfully explain the x-ray diffraction patterns.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.266801