Textile fabric defect detection based on low-rank representation
In this paper, we propose a novel and robust fabric defect detection method based on the low-rank representation (LRR) technique. Due to the repeated texture structure we model a defects-free fabric image as a low-rank structure. In addition, because defects, if exist, change only the texture of fab...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019, Vol.78 (1), p.99-124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a novel and robust fabric defect detection method based on the low-rank representation (LRR) technique. Due to the repeated texture structure we model a defects-free fabric image as a low-rank structure. In addition, because defects, if exist, change only the texture of fabric locally, we model them with a sparse structure. Based on the above idea, we represent a fabric image into the sum of a low-rank matrix which expresses fabric texture and a sparse matrix which expresses defects. Then, the LRR method is applied to obtain the corresponding decomposition. Especially, in order to make better use of low-rank structure characteristics we propose LRREB (low-rank representation based on eigenvalue decomposition and blocked matrix) method to improve LRR. LRREB is implemented by dividing a image into some corresponding blocked matrices to reduce dimensions and applying eigen-value decomposition (EVD) on blocked matrix instead of singular value decomposition (SVD) on original fabric image, which improves the accuracy and efficiency. No training samples are required in our methods. Experimental results show that the proposed fabric defect detection method is feasible, effective, and simple to be employed. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-017-5263-z |