Two-hole ground state wavefunction: Non-BCS pairing in a t − J two-leg ladder
Superconductivity is usually described in the framework of the Bardeen-Cooper-Schrieffer (BCS) wavefunction, which even includes the resonating-valence-bond (RVB) wavefunction proposed for the high-temperature superconductivity in the cuprate. A natural question is if any fundamental physics could b...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-12, Vol.98 (24), p.1, Article 245138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconductivity is usually described in the framework of the Bardeen-Cooper-Schrieffer (BCS) wavefunction, which even includes the resonating-valence-bond (RVB) wavefunction proposed for the high-temperature superconductivity in the cuprate. A natural question is if any fundamental physics could be possibly missed by applying such a scheme to strongly correlated systems. Here we study the pairing wavefunction of two holes injected into a Mott insulator/antiferromagnet in a two-leg ladder using variational Monte Carlo approach. By comparing with density-matrix renormalization group (DMRG) calculation, we show that a conventional BCS or RVB pairing of the doped holes makes qualitatively wrong predictions and is incompatible with the fundamental pairing force in the t− J model, which is kinetic-energy driven by nature. By contrast, a non-BCS-like wavefunction incorporating such novel effect will result in a substantially enhanced pairing strength and improved ground state energy as compared to the DMRG results. We argue that the non-BCS form of such a new ground state wavefunction is essential to describe a doped Mott antiferromagnet at finite doping. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.245138 |