Sign inversion in the terahertz photoconductivity of single-walled carbon nanotube films

In recent years, there have been conflicting reports regarding the ultrafast photoconductive response of films of single walled carbon nanotubes (CNTs), which apparently exhibit photoconductivities that can differ even in sign. Here, we observe explicitly that the THz photoconductivity of CNT films...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-12, Vol.98 (24), p.1, Article 241404
Hauptverfasser: Karlsen, Peter, Shuba, Mikhail V., Kuzhir, Polina P., Nasibulin, Albert G., Lamberti, Patrizia, Hendry, Euan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, there have been conflicting reports regarding the ultrafast photoconductive response of films of single walled carbon nanotubes (CNTs), which apparently exhibit photoconductivities that can differ even in sign. Here, we observe explicitly that the THz photoconductivity of CNT films is a highly variable quantity which correlates with the length of the CNTs, while the chirality distribution has little influence. Moreover, by comparing the photoinduced change in THz conductivity with heat-induced changes, we show that both occur primarily due to heat-generated modification of the Drude electron relaxation rate, resulting in a broadening of the plasmonic resonance present in finite-length metallic and doped semiconducting CNTs. This clarifies the nature of the photoresponse of CNT films and demonstrates the need to carefully consider the geometry of the CNTs, specifically the length, when considering them for application in optoelectronic devices.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.241404