Wear Study of Chicken Eggshell-Reinforced Al6061 Matrix Composites
The present work deals with conduction of wear test on Al6061/eggshell composites with load, reinforcement and sliding distance as control factors and its regression analysis. Chicken eggshell is one of the most abundant natural waste products generated in large amount by food processing industry du...
Gespeichert in:
Veröffentlicht in: | Transactions of the Indian Institute of Metals 2019-01, Vol.72 (1), p.73-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work deals with conduction of wear test on Al6061/eggshell composites with load, reinforcement and sliding distance as control factors and its regression analysis. Chicken eggshell is one of the most abundant natural waste products generated in large amount by food processing industry due to its everyday consumption. This material is simply disposed in nature thus constituting environmental hazards. Commercial use of eggshells can produce lightweight materials at low cost. Therefore, being complemented with less dense calcium carbonate, it can be used as reinforcement to develop metal matrix composite using stir casting process. Reinforcement is added in the range of 2–10 wt% at an interval of 2%. Optical microstructural characterization indicated fair distribution of particles in the matrix, and 4 wt% composite exhibited best properties among all. Further addition of particles proved to be detrimental due to increase in porosity and agglomeration of particles. Wear track and debris were examined with scanning electron microscope to explain the wear process. Regression analysis helped in establishing the relationship between the control factors. Reinforcement of eggshell particles improved the wear resistance of matrix significantly as suggested by analysis of variance. |
---|---|
ISSN: | 0972-2815 0975-1645 |
DOI: | 10.1007/s12666-018-1463-0 |