A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film

In this work, a novel material design is proposed and implemented for developing a high performance resistive-type strain sensor. Accordingly, an electrically conductive composite film of polyurethane/silver nanowires is prepared. Owing to the synergistic effects of the transparent and sunlight self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (5), p.2315-2325
Hauptverfasser: Song, Yi Xi, Xu, Wei Min, Rong, Min Zhi, Zhang, Ming Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a novel material design is proposed and implemented for developing a high performance resistive-type strain sensor. Accordingly, an electrically conductive composite film of polyurethane/silver nanowires is prepared. Owing to the synergistic effects of the transparent and sunlight self-healable polyurethane matrix, low-density and thin network of welded long silver nanowires, spray-coating, and sandwich structure consisting of two polyurethane layers and a silver nanowire network interlayer, the key factors that control the robustness and responsivity of the conduction paths while contradicting each other, are united, and the long-term cyclic loading induced failure can be self-repaired under sunshine. As a result, the composite successfully integrates high transparency, sensitivity, durability, self-healability and flexibility together, exhibiting promising application potential. A strain sensor based on a silver nanowire/polyurethane composite film has successfully integrated high transparency, sensitivity, durability, sunlight self-healability and flexibility together.
ISSN:2050-7488
2050-7496
DOI:10.1039/c8ta11435h