Time-dependent rate of multicomponent dark matter: Reproducing the DAMA/LIBRA phase-2 results
The current paradigm for dark matter direct detection is to assume that the dark sector is solely composed of a single particle species. In this short paper, we make the observation that dark matter comprising both a light and a heavy component that modulate out of phase leads to interesting phenome...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-12, Vol.98 (12), p.1, Article 123007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current paradigm for dark matter direct detection is to assume that the dark sector is solely composed of a single particle species. In this short paper, we make the observation that dark matter comprising both a light and a heavy component that modulate out of phase leads to interesting phenomenology in annual modulation experiments. For an illustrative example, we use the recently released DAMA/LIBRA phase-2 results with a lower energy threshold. Immediately after, it was argued that a one-component spin-independent dark matter explanation of the observed annual modulation is strongly disfavored or excluded unless isospin-violating couplings are invoked. We show that a simple two-component extension can reproduce the observed spectrum without the need to invoke fine-tuned couplings. Using the publicly available DAMA/LIBRA data, we perform a fit of the DAMA/LIBRA energy spectrum of the annual modulation amplitude to a scenario with two dark matter components. We also take into account how gravitational focusing affects the phases of the light and a heavy components differently, which leads to nontrivial effects in the total time-dependent rate. Our results show that there exists a unique solution in agreement with the data in the simplest case of isospin-conserving couplings with equal cross sections. The distinctive features found in this work are crucial for a dark matter interpretation of any observed annual modulation. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.98.123007 |