Primitive and Almost Primitive Elements of Schreier Varieties
A variety of linear algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free. A system of elements of a free algebra is primitive if there is a complement of this system with respect to a free generating set of the free algebra. An element of a free algebra of a Sc...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-02, Vol.237 (2), p.157-179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variety of linear algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free. A system of elements of a free algebra is primitive if there is a complement of this system with respect to a free generating set of the free algebra. An element of a free algebra of a Schreier variety is said to be almost primitive if it is not primitive in the free algebra, but it is a primitive element of any subalgebra that contains it. This survey article is devoted to the study of primitive and almost primitive elements of Schreier varieties. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-4148-2 |