Double-blind holography of attosecond pulses

A key challenge in attosecond science is the temporal characterization of attosecond pulses that are essential for understanding the evolution of electronic wavefunctions in atoms, molecules and solids 1 – 7 . Current characterization methods, based on nonlinear light–matter interactions, are limite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2019-02, Vol.13 (2), p.91-95
Hauptverfasser: Pedatzur, O., Trabattoni, A., Leshem, B., Shalmoni, H., Castrovilli, M. C., Galli, M., Lucchini, M., Månsson, E., Frassetto, F., Poletto, L., Nadler, B., Raz, O., Nisoli, M., Calegari, F., Oron, D., Dudovich, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A key challenge in attosecond science is the temporal characterization of attosecond pulses that are essential for understanding the evolution of electronic wavefunctions in atoms, molecules and solids 1 – 7 . Current characterization methods, based on nonlinear light–matter interactions, are limited in terms of stability and waveform complexity. Here, we experimentally demonstrate a conceptually new linear and all-optical pulse characterization method, inspired by double-blind holography. Holography is realized by measuring the extreme ultraviolet (XUV) spectra of two unknown attosecond signals and their interference. Assuming a finite pulse duration constraint, we reconstruct the missing spectral phases and characterize the unknown signals in both isolated pulse and double pulse scenarios. This method can be implemented in a wide range of experimental realizations, enabling the study of complex electron dynamics via a single-shot and linear measurement. Double-blind holography allows reconstruction of the missing spectral phases and characterization of the unknown signals in both isolated-pulse and double-pulse scenarios, facilitating the study of complex electron dynamics via a single-shot and linear measurement.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-018-0308-z