Point cloud measurements-uncertainty calculation on spatial-feature based registration

Purpose Measurement uncertainty calculation is an important and complicated problem in digitised components inspection. In such inspections, a coordinate measuring machine (CMM) and laser scanner are usually used to get the surface point clouds of the component in different postures. Then, the point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensor review 2019-01, Vol.39 (1), p.129-136
Hauptverfasser: Ding, Lijun, Dai, Shuguang, Mu, Pingan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Measurement uncertainty calculation is an important and complicated problem in digitised components inspection. In such inspections, a coordinate measuring machine (CMM) and laser scanner are usually used to get the surface point clouds of the component in different postures. Then, the point clouds are registered to construct fully connected point clouds of the component’s surfaces. However, in most cases, the measurement uncertainty is difficult to estimate after the scanned point cloud has been registered. This paper aims to propose a simplified method for calculating the uncertainty of point cloud measurements based on spatial feature registration. Design/methodology/approach In the proposed method, algorithmic models are used to calculate the point cloud measurement uncertainty based on noncontact measurements of the planes, lines and points of the component and spatial feature registration. Findings The measurement uncertainty based on spatial feature registration is related to the mutual position of registration features and the number of sensor commutation in the scanning process, but not to the spatial distribution of the measured feature. The results of experiments conducted verify the efficacy of the proposed method. Originality/value The proposed method provides an efficient algorithm for calculating the measurement uncertainty of registration point clouds based on part features, and therefore has important theoretical and practical significance in digitised components inspection.
ISSN:0260-2288
1758-6828
DOI:10.1108/SR-02-2018-0043