Arithmetic Surjectivity for Zero-Cycles

Let \(f:X\to Y\) be a proper, dominant morphism of smooth varieties over a number field \(k\). When is it true that for almost all places \(v\) of \(k\), the fibre \(X_P\) over any point \(P\in Y(k_v)\) contains a zero-cycle of degree \(1\)? We develop a necessary and sufficient condition to answer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
1. Verfasser: Gvirtz-Chen, Damián
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(f:X\to Y\) be a proper, dominant morphism of smooth varieties over a number field \(k\). When is it true that for almost all places \(v\) of \(k\), the fibre \(X_P\) over any point \(P\in Y(k_v)\) contains a zero-cycle of degree \(1\)? We develop a necessary and sufficient condition to answer this question. The proof extends logarithmic geometry tools that have recently been developed by Denef and Loughran-Skorobogatov-Smeets to deal with analogous Ax-Kochen type statements for rational points.
ISSN:2331-8422