Oblique magnetic fields and the role of frame dragging

Magnetic null points can develop near the ergosphere boundary of a rotating black hole by the combined effects of strong gravitational field and the frame-dragging mechanism. The electric component does not vanish in the magnetic null and an efficient process or particle acceleration can occur. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Karas, Vladimir, Kopacek, Ondrej, Kunneriath, Devaky, Tahamtan, Tayebeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic null points can develop near the ergosphere boundary of a rotating black hole by the combined effects of strong gravitational field and the frame-dragging mechanism. The electric component does not vanish in the magnetic null and an efficient process or particle acceleration can occur. The situation is relevant for starving (low-accretion-rate, such as the Milky Way's supermassive black hole) nuclei of some galaxies which exhibit only episodic accretion events. The presence of the magnetic field field of an external origin is an important aspect. We propose that such conditions can develop when a magnetized neutron star approaches the supermassive black hole during late stages of its inspiral motion. The field lines of the neutron star dipole thread the black hole's event horizon and change rapidly their connectivity. We put in comparison the case of a dipole-type magnetic field of a sinking and orbiting star near a non-rotating black hole, and the near-horizon structure of an asymptotically uniform magnetic field of a distant source near a fast-rotating black hole. Although the two cases are qualitatively different from each other, they both develop magnetically neutral null points near the event horizon.
ISSN:2331-8422