Selfextensional logics with a distributive nearlattice term

We define when a ternary term m of an algebraic language L is called a distributive nearlattice term ( DN -term) of a sentential logic S . Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a DN -term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2019-02, Vol.58 (1-2), p.219-243
1. Verfasser: González, Luciano J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define when a ternary term m of an algebraic language L is called a distributive nearlattice term ( DN -term) of a sentential logic S . Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a DN -term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras (under the point of view of Abstract Algebraic Logic) associated with a selfextensional logic with a DN -term is a variety, and we obtain that the logic is in fact fully selfextensional.
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-018-0628-1