Convexity and unique minimum points
We show constructively that every quasi-convex, uniformly continuous function f : C → R with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperpla...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2019-02, Vol.58 (1-2), p.27-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show constructively that every quasi-convex, uniformly continuous function
f
:
C
→
R
with at most one minimum point has a minimum point, where
C
is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory. |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-018-0619-2 |