The binary expansion and the intermediate value theorem in constructive reverse mathematics

We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ( BE ) is equivalent to weak König lemma ( WKL ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to WKL for convex trees,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2019-02, Vol.58 (1-2), p.203-217
Hauptverfasser: Berger, Josef, Ishihara, Hajime, Kihara, Takayuki, Nemoto, Takako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ( BE ) is equivalent to weak König lemma ( WKL ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to WKL for convex trees, in the framework of constructive reverse mathematics.
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-018-0627-2