The binary expansion and the intermediate value theorem in constructive reverse mathematics
We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ( BE ) is equivalent to weak König lemma ( WKL ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to WKL for convex trees,...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2019-02, Vol.58 (1-2), p.203-217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of a
convex
tree. We show that the binary expansion for real numbers in the unit interval (
BE
) is equivalent to weak König lemma (
WKL
) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to
WKL
for convex trees, in the framework of constructive reverse mathematics. |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-018-0627-2 |