Construction of fast retrieval model of e-commerce supply chain information system based on Bayesian network

Bayesian network is a kind of uncertainty knowledge expression and reasoning tool, and it is an effective means to solve problems in related fields such as information retrieval. Considering the characteristics of e-commerce supply chain supply information and Bayesian network, a cognitive big data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems and e-business management 2020-12, Vol.18 (4), p.705-722
1. Verfasser: Kang, Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian network is a kind of uncertainty knowledge expression and reasoning tool, and it is an effective means to solve problems in related fields such as information retrieval. Considering the characteristics of e-commerce supply chain supply information and Bayesian network, a cognitive big data analysis method for intelligent information system is designed. The model uses a set of information sample documents to describe the query requirements and the documents to be detected. By calculating the similarity between them, the return results of the general search engine are sorted, thereby retrieving the supply chain supply information required by the user. Through numerical results, the precision of the source information retrieval model based on Bayesian network is also significantly higher than that of the trust network model and the inference network model, and the experimental data shows that the Bayesian network model has better retrieval performance than the trust network model and the inference network model. Therefore, when conducting large-scale e-commerce supply chain supply information collection, Bayesian network-based source information retrieval model is effective.
ISSN:1617-9846
1617-9854
DOI:10.1007/s10257-018-00392-6