A randomized method for handling a difficult function in a convex optimization problem, motivated by probabilistic programming
We propose a randomized gradient method for handling a convex function whose gradient computation is demanding. The method bears a resemblance to the stochastic approximation family. But in contrast to stochastic approximation, the present method builds a model problem. The approach is adapted to pr...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2019, p.1-32 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a randomized gradient method for handling a convex function whose gradient computation is demanding. The method bears a resemblance to the stochastic approximation family. But in contrast to stochastic approximation, the present method builds a model problem. The approach is adapted to probability maximization and probabilistic constrained problems. We discuss simulation procedures for gradient estimation. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-019-03143-z |