Detection of outlier information by the use of linguistic summaries based on classic and interval‐valued fuzzy sets

Automatic summary of databases is an important tool in strategic decision‐making. This paper presents the application of linguistic summaries to outlier detection in databases containing both text and numeric attributes. The proposed method applies Yager’s standard summary based on interval‐valued f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2019-03, Vol.34 (3), p.415-438
Hauptverfasser: Duraj, Agnieszka, Niewiadomski, Adam, Szczepaniak, Piotr S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic summary of databases is an important tool in strategic decision‐making. This paper presents the application of linguistic summaries to outlier detection in databases containing both text and numeric attributes. The proposed method applies Yager’s standard summary based on interval‐valued fuzzy sets. Fuzzy similarity measures are the features which are looked for. Detection of outliers can identify defects, remove impurities from the data, and, most of all, it may provide the basis for decision‐making processes. In this paper, we introduce a definition of an outlier based on linguistic summaries. Feasibility of the method is demonstrated on practical examples.
ISSN:0884-8173
1098-111X
DOI:10.1002/int.22059