Dynamic Nuclear Polarization of 13C Nuclei in the Liquid State over a 10 Tesla Field Range

Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal‐to‐noise ratio. Dynamic nuclear polarization (DNP), a technique based on tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2019-01, Vol.131 (5), p.1416-1420
Hauptverfasser: Orlando, Tomas, Dervişoğlu, Rıza, Levien, Marcel, Tkach, Igor, Prisner, Thomas F., Andreas, Loren B., Denysenkov, Vasyl P., Bennati, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal‐to‐noise ratio. Dynamic nuclear polarization (DNP), a technique based on transfer of polarization from electron to nuclear spins, has emerged as a tool to enhance sensitivity of NMR. However, the approach in liquids still faces several challenges. Herein we report the observation of room‐temperature, liquid DNP 13C signal enhancements in organic small molecules as high as 600 at 9.4 Tesla and 800 at 1.2 Tesla. A mechanistic investigation of the 13C‐DNP field dependence shows that DNP efficiency is raised by proper choice of the polarizing agent (paramagnetic center) and by halogen atoms as mediators of scalar hyperfine interaction. Observation of sizable DNP of 13CH2 and 13CH3 groups in organic molecules at 9.4 T opens perspective for a broader application of this method. Vom Hintergrund abgehoben: Dynamische Polarisierung von 13C‐Kernen im flüssigen Zustand verstärkt ihr NMR‐Signal‐Rausch‐Verhältnis um Faktoren von 101–103 in einem 10‐Tesla‐Fenster. Eine feldabhängige Analyse führte zu unterschiedlichen optimalen Bedingungen. Deutliche Verstärkungen für 13CH2‐ und 13CH3‐Gruppen in organischen Molekülen eröffnen der Methode weitere Anwendungsmöglichkeiten.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201811892