Effect of Compressive and Shear Deformation of 2.5D Preform on its Stiffness of Composites
Transverse compaction and in-plane shear deformartion are the dominative deformation mode for woven preform during forming process. A full finite element model of the 2.5D woven composites has been established by the computed tomography (CT) in this paper. Based on the energy method, the effective o...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2019-01, Vol.943, p.75-80 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transverse compaction and in-plane shear deformartion are the dominative deformation mode for woven preform during forming process. A full finite element model of the 2.5D woven composites has been established by the computed tomography (CT) in this paper. Based on the energy method, the effective orthotropic/anisotropic stiffness coefficients Cij are calculated by performing a finite element analysis (FEA) of this full cell model. Using this model, the effects of the compaction and shear deformation of the 2.5D woven preform on the composites stiffness are investigated in detail. Compared the results of the static tensile tests, the rationality of the model and the method is verified. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.943.75 |