Singular Hamiltonian elliptic systems with critical exponential growth in dimension two
We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system −Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-01, Vol.292 (1), p.137-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Mathematische Nachrichten |
container_volume | 292 |
creator | Monari Soares, Sergio H. Santaria Leuyacc, Yony R. |
description | We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system
−Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation. |
doi_str_mv | 10.1002/mana.201700215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167857014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167857014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-2bc3e7d7d0c601828d025b1f3815c8d33ee79690a76f5f078b9d4bffaf0d0f83</originalsourceid><addsrcrecordid>eNqFULFOwzAQtRBIlMLKbIk55ezUsTNWFVCkAgOVYLOcxC6uErvYqUL_HldFMDLd3bv33p0eQtcEJgSA3nbKqQkFwtNA2AkaEUZpRgtSnKJRwljGxPT9HF3EuAGAsuTFCL29WrfetSrgheps23tnlcO6be22tzWO-9jrLuLB9h-4DjZhqsX6a-uddr1N_Tr4Ie2sw43ttIvWO9wP_hKdGdVGffVTx2h1f7eaL7Lly8PjfLbM6pxxltGqzjVveAN1AURQ0aQ_K2JyQVgtmjzXmpdFCYoXhhngoiqbaWWMMtCAEfkY3Rxtt8F_7nTs5cbvgksXJSUFF4wDmSbW5Miqg48xaCO3wXYq7CUBechOHrKTv9klQXkUDLbV-3_Y8mn2PPvTfgNSMnSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167857014</pqid></control><display><type>article</type><title>Singular Hamiltonian elliptic systems with critical exponential growth in dimension two</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Monari Soares, Sergio H. ; Santaria Leuyacc, Yony R.</creator><creatorcontrib>Monari Soares, Sergio H. ; Santaria Leuyacc, Yony R.</creatorcontrib><description>We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system
−Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201700215</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>35J75; Secondary: 35J50 ; critical exponential growth ; Primary: 35J15 ; singular Hamiltonian elliptic systems ; Sobolev space ; Trudinger–Moser inequalities in Lorentz–Sobolev spaces</subject><ispartof>Mathematische Nachrichten, 2019-01, Vol.292 (1), p.137-158</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-2bc3e7d7d0c601828d025b1f3815c8d33ee79690a76f5f078b9d4bffaf0d0f83</citedby><cites>FETCH-LOGICAL-c3575-2bc3e7d7d0c601828d025b1f3815c8d33ee79690a76f5f078b9d4bffaf0d0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201700215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201700215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Monari Soares, Sergio H.</creatorcontrib><creatorcontrib>Santaria Leuyacc, Yony R.</creatorcontrib><title>Singular Hamiltonian elliptic systems with critical exponential growth in dimension two</title><title>Mathematische Nachrichten</title><description>We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system
−Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation.</description><subject>35J75; Secondary: 35J50</subject><subject>critical exponential growth</subject><subject>Primary: 35J15</subject><subject>singular Hamiltonian elliptic systems</subject><subject>Sobolev space</subject><subject>Trudinger–Moser inequalities in Lorentz–Sobolev spaces</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFULFOwzAQtRBIlMLKbIk55ezUsTNWFVCkAgOVYLOcxC6uErvYqUL_HldFMDLd3bv33p0eQtcEJgSA3nbKqQkFwtNA2AkaEUZpRgtSnKJRwljGxPT9HF3EuAGAsuTFCL29WrfetSrgheps23tnlcO6be22tzWO-9jrLuLB9h-4DjZhqsX6a-uddr1N_Tr4Ie2sw43ttIvWO9wP_hKdGdVGffVTx2h1f7eaL7Lly8PjfLbM6pxxltGqzjVveAN1AURQ0aQ_K2JyQVgtmjzXmpdFCYoXhhngoiqbaWWMMtCAEfkY3Rxtt8F_7nTs5cbvgksXJSUFF4wDmSbW5Miqg48xaCO3wXYq7CUBechOHrKTv9klQXkUDLbV-3_Y8mn2PPvTfgNSMnSW</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Monari Soares, Sergio H.</creator><creator>Santaria Leuyacc, Yony R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201901</creationdate><title>Singular Hamiltonian elliptic systems with critical exponential growth in dimension two</title><author>Monari Soares, Sergio H. ; Santaria Leuyacc, Yony R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-2bc3e7d7d0c601828d025b1f3815c8d33ee79690a76f5f078b9d4bffaf0d0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35J75; Secondary: 35J50</topic><topic>critical exponential growth</topic><topic>Primary: 35J15</topic><topic>singular Hamiltonian elliptic systems</topic><topic>Sobolev space</topic><topic>Trudinger–Moser inequalities in Lorentz–Sobolev spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monari Soares, Sergio H.</creatorcontrib><creatorcontrib>Santaria Leuyacc, Yony R.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monari Soares, Sergio H.</au><au>Santaria Leuyacc, Yony R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Hamiltonian elliptic systems with critical exponential growth in dimension two</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2019-01</date><risdate>2019</risdate><volume>292</volume><issue>1</issue><spage>137</spage><epage>158</epage><pages>137-158</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system
−Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201700215</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2019-01, Vol.292 (1), p.137-158 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2167857014 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 35J75 Secondary: 35J50 critical exponential growth Primary: 35J15 singular Hamiltonian elliptic systems Sobolev space Trudinger–Moser inequalities in Lorentz–Sobolev spaces |
title | Singular Hamiltonian elliptic systems with critical exponential growth in dimension two |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Hamiltonian%20elliptic%20systems%20with%20critical%20exponential%20growth%20in%20dimension%20two&rft.jtitle=Mathematische%20Nachrichten&rft.au=Monari%20Soares,%20Sergio%20H.&rft.date=2019-01&rft.volume=292&rft.issue=1&rft.spage=137&rft.epage=158&rft.pages=137-158&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201700215&rft_dat=%3Cproquest_cross%3E2167857014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167857014&rft_id=info:pmid/&rfr_iscdi=true |