Singular Hamiltonian elliptic systems with critical exponential growth in dimension two
We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system −Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-01, Vol.292 (1), p.137-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system
−Δu+V(x)u=g(v)|x|a,x∈R2,−Δv+V(x)v=f(u)|x|b,x∈R2,where a,b are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on R2 by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201700215 |