The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers

We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2018-08, Vol.57 (8S3), p.8
Hauptverfasser: Sekhar, Halubai, Fukuda, Tetsuo, Tanahashi, Katsuto, Shirasawa, Katsuhiko, Takato, Hidetaka, Ohkubo, Kazuya, Ono, Hiromichi, Sampei, Yoshiyuki, Kobayashi, Tsubasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8S3
container_start_page 8
container_title Japanese Journal of Applied Physics
container_volume 57
creator Sekhar, Halubai
Fukuda, Tetsuo
Tanahashi, Katsuto
Shirasawa, Katsuhiko
Takato, Hidetaka
Ohkubo, Kazuya
Ono, Hiromichi
Sampei, Yoshiyuki
Kobayashi, Tsubasa
description We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafers showed a lower fracture stress in those from the fresh-wire side compared to the worn-wire side. This is a remarkable result when wafers are sawn with conventional diamond wire. On the contrary, wafers sawn with improved diamond wire (100d-M6/12) showed a higher fracture stress compared to those cut with conventional diamond wire (100d-M8/16), for both the fresh- and worn-wire sides. Observing the subsurface areas of wafers by micro-Raman spectroscopy, we succeeded in quantifying the defective silicon fraction as the Raman crystallinity factor (Φc). We found that wafers having a higher fracture strength had a larger Φc.
doi_str_mv 10.7567/JJAP.57.08RB08
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2167299484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167299484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-707cd33d031b4c734140a2346558444b31ae26f188fe615eea30258f81eca1e83</originalsourceid><addsrcrecordid>eNqV0M1LwzAYBvAgCs7p1XPBm9CazyY7zuHXGCg6zyFLky2la2vSMvbfm9KBZ08vL_ze54UHgFsEM85y_rBczj8yxjMoPh-hOAMTRChPKczZOZhAiFFKZxhfgqsQyrjmjKIJqNY7k7h9q3SXNDYJ_Sb03iptkkLt1dYkTZ10kVgfRe9NEjpv6m23G3Th1L6pi_TgvEmDOtRJXBvtj6FTVeXqqF3ldIw4KGt8uAYXVlXB3JzmFHw_P60Xr-nq_eVtMV-lmkLSpRxyXRBSQII2VHNCEYUKE5ozJiilG4KUwblFQliTI2aMIhAzYQUyWiEjyBTcjbmtb356EzpZNr2v40uJUc7xbEYFjSoblfZNCN5Y2Xq3V_4oEZRDo3JoVDIux0bjwf144Jr2L_FfuCxVOyDxRU5QtoUlv63vhaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167299484</pqid></control><display><type>article</type><title>The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers</title><source>Institute of Physics Journals</source><creator>Sekhar, Halubai ; Fukuda, Tetsuo ; Tanahashi, Katsuto ; Shirasawa, Katsuhiko ; Takato, Hidetaka ; Ohkubo, Kazuya ; Ono, Hiromichi ; Sampei, Yoshiyuki ; Kobayashi, Tsubasa</creator><creatorcontrib>Sekhar, Halubai ; Fukuda, Tetsuo ; Tanahashi, Katsuto ; Shirasawa, Katsuhiko ; Takato, Hidetaka ; Ohkubo, Kazuya ; Ono, Hiromichi ; Sampei, Yoshiyuki ; Kobayashi, Tsubasa</creatorcontrib><description>We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafers showed a lower fracture stress in those from the fresh-wire side compared to the worn-wire side. This is a remarkable result when wafers are sawn with conventional diamond wire. On the contrary, wafers sawn with improved diamond wire (100d-M6/12) showed a higher fracture stress compared to those cut with conventional diamond wire (100d-M8/16), for both the fresh- and worn-wire sides. Observing the subsurface areas of wafers by micro-Raman spectroscopy, we succeeded in quantifying the defective silicon fraction as the Raman crystallinity factor (Φc). We found that wafers having a higher fracture strength had a larger Φc.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.57.08RB08</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Applied Physics</publisher><subject>Diamond machining ; Fracture strength ; Impact damage ; Raman spectroscopy ; Silicon ; Silicon wafers ; Wafers ; Wire</subject><ispartof>Japanese Journal of Applied Physics, 2018-08, Vol.57 (8S3), p.8</ispartof><rights>2018 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-707cd33d031b4c734140a2346558444b31ae26f188fe615eea30258f81eca1e83</citedby><cites>FETCH-LOGICAL-c403t-707cd33d031b4c734140a2346558444b31ae26f188fe615eea30258f81eca1e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.57.08RB08/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids></links><search><creatorcontrib>Sekhar, Halubai</creatorcontrib><creatorcontrib>Fukuda, Tetsuo</creatorcontrib><creatorcontrib>Tanahashi, Katsuto</creatorcontrib><creatorcontrib>Shirasawa, Katsuhiko</creatorcontrib><creatorcontrib>Takato, Hidetaka</creatorcontrib><creatorcontrib>Ohkubo, Kazuya</creatorcontrib><creatorcontrib>Ono, Hiromichi</creatorcontrib><creatorcontrib>Sampei, Yoshiyuki</creatorcontrib><creatorcontrib>Kobayashi, Tsubasa</creatorcontrib><title>The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafers showed a lower fracture stress in those from the fresh-wire side compared to the worn-wire side. This is a remarkable result when wafers are sawn with conventional diamond wire. On the contrary, wafers sawn with improved diamond wire (100d-M6/12) showed a higher fracture stress compared to those cut with conventional diamond wire (100d-M8/16), for both the fresh- and worn-wire sides. Observing the subsurface areas of wafers by micro-Raman spectroscopy, we succeeded in quantifying the defective silicon fraction as the Raman crystallinity factor (Φc). We found that wafers having a higher fracture strength had a larger Φc.</description><subject>Diamond machining</subject><subject>Fracture strength</subject><subject>Impact damage</subject><subject>Raman spectroscopy</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Wafers</subject><subject>Wire</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqV0M1LwzAYBvAgCs7p1XPBm9CazyY7zuHXGCg6zyFLky2la2vSMvbfm9KBZ08vL_ze54UHgFsEM85y_rBczj8yxjMoPh-hOAMTRChPKczZOZhAiFFKZxhfgqsQyrjmjKIJqNY7k7h9q3SXNDYJ_Sb03iptkkLt1dYkTZ10kVgfRe9NEjpv6m23G3Th1L6pi_TgvEmDOtRJXBvtj6FTVeXqqF3ldIw4KGt8uAYXVlXB3JzmFHw_P60Xr-nq_eVtMV-lmkLSpRxyXRBSQII2VHNCEYUKE5ozJiilG4KUwblFQliTI2aMIhAzYQUyWiEjyBTcjbmtb356EzpZNr2v40uJUc7xbEYFjSoblfZNCN5Y2Xq3V_4oEZRDo3JoVDIux0bjwf144Jr2L_FfuCxVOyDxRU5QtoUlv63vhaY</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Sekhar, Halubai</creator><creator>Fukuda, Tetsuo</creator><creator>Tanahashi, Katsuto</creator><creator>Shirasawa, Katsuhiko</creator><creator>Takato, Hidetaka</creator><creator>Ohkubo, Kazuya</creator><creator>Ono, Hiromichi</creator><creator>Sampei, Yoshiyuki</creator><creator>Kobayashi, Tsubasa</creator><general>The Japan Society of Applied Physics</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180801</creationdate><title>The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers</title><author>Sekhar, Halubai ; Fukuda, Tetsuo ; Tanahashi, Katsuto ; Shirasawa, Katsuhiko ; Takato, Hidetaka ; Ohkubo, Kazuya ; Ono, Hiromichi ; Sampei, Yoshiyuki ; Kobayashi, Tsubasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-707cd33d031b4c734140a2346558444b31ae26f188fe615eea30258f81eca1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Diamond machining</topic><topic>Fracture strength</topic><topic>Impact damage</topic><topic>Raman spectroscopy</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Wafers</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekhar, Halubai</creatorcontrib><creatorcontrib>Fukuda, Tetsuo</creatorcontrib><creatorcontrib>Tanahashi, Katsuto</creatorcontrib><creatorcontrib>Shirasawa, Katsuhiko</creatorcontrib><creatorcontrib>Takato, Hidetaka</creatorcontrib><creatorcontrib>Ohkubo, Kazuya</creatorcontrib><creatorcontrib>Ono, Hiromichi</creatorcontrib><creatorcontrib>Sampei, Yoshiyuki</creatorcontrib><creatorcontrib>Kobayashi, Tsubasa</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekhar, Halubai</au><au>Fukuda, Tetsuo</au><au>Tanahashi, Katsuto</au><au>Shirasawa, Katsuhiko</au><au>Takato, Hidetaka</au><au>Ohkubo, Kazuya</au><au>Ono, Hiromichi</au><au>Sampei, Yoshiyuki</au><au>Kobayashi, Tsubasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>57</volume><issue>8S3</issue><spage>8</spage><pages>8-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafers showed a lower fracture stress in those from the fresh-wire side compared to the worn-wire side. This is a remarkable result when wafers are sawn with conventional diamond wire. On the contrary, wafers sawn with improved diamond wire (100d-M6/12) showed a higher fracture stress compared to those cut with conventional diamond wire (100d-M8/16), for both the fresh- and worn-wire sides. Observing the subsurface areas of wafers by micro-Raman spectroscopy, we succeeded in quantifying the defective silicon fraction as the Raman crystallinity factor (Φc). We found that wafers having a higher fracture strength had a larger Φc.</abstract><cop>Tokyo</cop><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.57.08RB08</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2018-08, Vol.57 (8S3), p.8
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2167299484
source Institute of Physics Journals
subjects Diamond machining
Fracture strength
Impact damage
Raman spectroscopy
Silicon
Silicon wafers
Wafers
Wire
title The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20subsurface%20damage%20on%20the%20fracture%20strength%20of%20diamond-wire-sawn%20monocrystalline%20silicon%20wafers&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Sekhar,%20Halubai&rft.date=2018-08-01&rft.volume=57&rft.issue=8S3&rft.spage=8&rft.pages=8-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.57.08RB08&rft_dat=%3Cproquest_cross%3E2167299484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167299484&rft_id=info:pmid/&rfr_iscdi=true