The impact of subsurface damage on the fracture strength of diamond-wire-sawn monocrystalline silicon wafers
We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafer...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2018-08, Vol.57 (8S3), p.8 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a multi-diamond-wire saw for cutting monocrystalline silicon bricks into thin (120 µm) and thick (200 µm) wafers and label as fresh- and worn-wire sides. While almost no difference was found in the fracture stress of the thick (200 µm) wafers cut from either side, the thin (120 µm) wafers showed a lower fracture stress in those from the fresh-wire side compared to the worn-wire side. This is a remarkable result when wafers are sawn with conventional diamond wire. On the contrary, wafers sawn with improved diamond wire (100d-M6/12) showed a higher fracture stress compared to those cut with conventional diamond wire (100d-M8/16), for both the fresh- and worn-wire sides. Observing the subsurface areas of wafers by micro-Raman spectroscopy, we succeeded in quantifying the defective silicon fraction as the Raman crystallinity factor (Φc). We found that wafers having a higher fracture strength had a larger Φc. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.57.08RB08 |