Pathwise large deviations for the rough Bergomi model

Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2018-12, Vol.55 (4), p.1078-1092
Hauptverfasser: Jacquier, Antoine, Pakkanen, Mikko S., Stone, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2018.72