CdS barrier to minimize Zn loss during CdCl^sub 2^ treatment of Cd-Zn-Te absorbers
A major challenge in the fabrication of high band gap II–VI polycrystalline solar cells is to preserve the original composition of the absorber after the CdCl2 activation treatment. In this study, a method is demonstrated to maintain the Cd-Zn-Te alloy absorber composition during its exposure to the...
Gespeichert in:
Veröffentlicht in: | Solar energy 2018-10, Vol.173, p.1181 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major challenge in the fabrication of high band gap II–VI polycrystalline solar cells is to preserve the original composition of the absorber after the CdCl2 activation treatment. In this study, a method is demonstrated to maintain the Cd-Zn-Te alloy absorber composition during its exposure to the CdCl2 treatment. A thin film of CdS was applied as a barrier on the back surface of the high band gap polycrystalline Cd(1−x)ZnxTe (x = 20% by atomic ratio, corresponding band gap 1.72 eV) before the CdCl2 treatment. Using transmission electron microscopy and energy dispersive spectroscopy, it was observed that the composition of Cd-Zn-Te was maintained after the CdCl2 treatment. The devices fabricated after removing the thin film of CdS, exhibited diode-like behavior. A significant increase in the quantum efficiency near the short wavelength region was observed, and the band gap of Cd(1−x)ZnxTe was maintained. |
---|---|
ISSN: | 0038-092X 1471-1257 |
DOI: | 10.1016/j.solener.2018.08.060 |