A Bonnet–Myers type theorem for quaternionic contact structures

We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-26, Article 37
Hauptverfasser: Barilari, Davide, Ivanov, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-018-1467-y