A Bonnet–Myers type theorem for quaternionic contact structures
We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tens...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2019-02, Vol.58 (1), p.1-26, Article 37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a Bonnet–Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-018-1467-y |