Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation

A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2019-01, Vol.81 (1), p.69-97
Hauptverfasser: Biedl, Therese, Chan, Timothy M., Lee, Stephanie, Mehrabi, Saeed, Montecchiani, Fabrizio, Vosoughpour, Hamideh, Yu, Ziting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 69
container_title Algorithmica
container_volume 81
creator Biedl, Therese
Chan, Timothy M.
Lee, Stephanie
Mehrabi, Saeed
Montecchiani, Fabrizio
Vosoughpour, Hamideh
Yu, Ziting
description A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k -Transmitters ( ST k ) problem, the objective is to guard P with the minimum number of sliding k -transmitters. In this paper, we give a constant-factor approximation algorithm for the ST k problem on P for any fixed k ≥ 0 . Moreover, we show that the ST 0 problem is NP -hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For k > 0 , the problem is NP -hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P .
doi_str_mv 10.1007/s00453-018-0433-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165690961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165690961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-85abb6a987fe17ea3ff4e6945c48dd953d108e8502fd6150a32c5f1200ee93e53</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA13duw4bFUFLVKlDpSByXITp01Jk2K7At4elyIxMd3yff_d_YRcI9wiQH4XADIpGKBmkAnB1AkZYCY4A5nhKRkA5pplCvNzchHCBgB5XqgBeZ3sra-abkXnPq77Vd_Zlo58pBPbts43LtCPJq7pc9v8UG9s4W0Xtk2Mzod7Ok1250KgtqvoaLfz_WeztbHpu0tyVts2uKvfOSQvjw-L8ZTN5pOn8WjGSq50ZFra5VLZQue1w9xZUdeZU0Umy0xXVSFFhaCdlsDrSqEEK3gpa-QAzhXCSTEkN8fctPt970I0m37v0xvBcFRSFVAoTBQeqdL3IXhXm51Ph_ovg2AODZpjgyY1aA4NGpUcfnRCYruV83_J_0vfy2Jzxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165690961</pqid></control><display><type>article</type><title>Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Biedl, Therese ; Chan, Timothy M. ; Lee, Stephanie ; Mehrabi, Saeed ; Montecchiani, Fabrizio ; Vosoughpour, Hamideh ; Yu, Ziting</creator><creatorcontrib>Biedl, Therese ; Chan, Timothy M. ; Lee, Stephanie ; Mehrabi, Saeed ; Montecchiani, Fabrizio ; Vosoughpour, Hamideh ; Yu, Ziting</creatorcontrib><description>A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k -Transmitters ( ST k ) problem, the objective is to guard P with the minimum number of sliding k -transmitters. In this paper, we give a constant-factor approximation algorithm for the ST k problem on P for any fixed k ≥ 0 . Moreover, we show that the ST 0 problem is NP -hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For k &gt; 0 , the problem is NP -hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P .</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-018-0433-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Apexes ; Approximation ; Art galleries &amp; museums ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Lower bounds ; Mathematical analysis ; Mathematics of Computing ; Sliding ; Theory of Computation ; Transmitters</subject><ispartof>Algorithmica, 2019-01, Vol.81 (1), p.69-97</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-85abb6a987fe17ea3ff4e6945c48dd953d108e8502fd6150a32c5f1200ee93e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-018-0433-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-018-0433-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Biedl, Therese</creatorcontrib><creatorcontrib>Chan, Timothy M.</creatorcontrib><creatorcontrib>Lee, Stephanie</creatorcontrib><creatorcontrib>Mehrabi, Saeed</creatorcontrib><creatorcontrib>Montecchiani, Fabrizio</creatorcontrib><creatorcontrib>Vosoughpour, Hamideh</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><title>Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k -Transmitters ( ST k ) problem, the objective is to guard P with the minimum number of sliding k -transmitters. In this paper, we give a constant-factor approximation algorithm for the ST k problem on P for any fixed k ≥ 0 . Moreover, we show that the ST 0 problem is NP -hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For k &gt; 0 , the problem is NP -hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P .</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Approximation</subject><subject>Art galleries &amp; museums</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Sliding</subject><subject>Theory of Computation</subject><subject>Transmitters</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA13duw4bFUFLVKlDpSByXITp01Jk2K7At4elyIxMd3yff_d_YRcI9wiQH4XADIpGKBmkAnB1AkZYCY4A5nhKRkA5pplCvNzchHCBgB5XqgBeZ3sra-abkXnPq77Vd_Zlo58pBPbts43LtCPJq7pc9v8UG9s4W0Xtk2Mzod7Ok1250KgtqvoaLfz_WeztbHpu0tyVts2uKvfOSQvjw-L8ZTN5pOn8WjGSq50ZFra5VLZQue1w9xZUdeZU0Umy0xXVSFFhaCdlsDrSqEEK3gpa-QAzhXCSTEkN8fctPt970I0m37v0xvBcFRSFVAoTBQeqdL3IXhXm51Ph_ovg2AODZpjgyY1aA4NGpUcfnRCYruV83_J_0vfy2Jzxg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Biedl, Therese</creator><creator>Chan, Timothy M.</creator><creator>Lee, Stephanie</creator><creator>Mehrabi, Saeed</creator><creator>Montecchiani, Fabrizio</creator><creator>Vosoughpour, Hamideh</creator><creator>Yu, Ziting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation</title><author>Biedl, Therese ; Chan, Timothy M. ; Lee, Stephanie ; Mehrabi, Saeed ; Montecchiani, Fabrizio ; Vosoughpour, Hamideh ; Yu, Ziting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-85abb6a987fe17ea3ff4e6945c48dd953d108e8502fd6150a32c5f1200ee93e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Approximation</topic><topic>Art galleries &amp; museums</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Sliding</topic><topic>Theory of Computation</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biedl, Therese</creatorcontrib><creatorcontrib>Chan, Timothy M.</creatorcontrib><creatorcontrib>Lee, Stephanie</creatorcontrib><creatorcontrib>Mehrabi, Saeed</creatorcontrib><creatorcontrib>Montecchiani, Fabrizio</creatorcontrib><creatorcontrib>Vosoughpour, Hamideh</creatorcontrib><creatorcontrib>Yu, Ziting</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biedl, Therese</au><au>Chan, Timothy M.</au><au>Lee, Stephanie</au><au>Mehrabi, Saeed</au><au>Montecchiani, Fabrizio</au><au>Vosoughpour, Hamideh</au><au>Yu, Ziting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>69</spage><epage>97</epage><pages>69-97</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k -Transmitters ( ST k ) problem, the objective is to guard P with the minimum number of sliding k -transmitters. In this paper, we give a constant-factor approximation algorithm for the ST k problem on P for any fixed k ≥ 0 . Moreover, we show that the ST 0 problem is NP -hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For k &gt; 0 , the problem is NP -hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-018-0433-6</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2019-01, Vol.81 (1), p.69-97
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2165690961
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Approximation
Art galleries & museums
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Lower bounds
Mathematical analysis
Mathematics of Computing
Sliding
Theory of Computation
Transmitters
title Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guarding%20Orthogonal%20Art%20Galleries%20with%20Sliding%20k-Transmitters:%20Hardness%20and%20Approximation&rft.jtitle=Algorithmica&rft.au=Biedl,%20Therese&rft.date=2019-01-01&rft.volume=81&rft.issue=1&rft.spage=69&rft.epage=97&rft.pages=69-97&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-018-0433-6&rft_dat=%3Cproquest_cross%3E2165690961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165690961&rft_id=info:pmid/&rfr_iscdi=true