Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation

A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2019-01, Vol.81 (1), p.69-97
Hauptverfasser: Biedl, Therese, Chan, Timothy M., Lee, Stephanie, Mehrabi, Saeed, Montecchiani, Fabrizio, Vosoughpour, Hamideh, Yu, Ziting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A sliding k -transmitter inside an orthogonal polygon P , for a fixed k ≥ 0 , is a point guard that travels along an axis-parallel line segment s in P . The sliding k -transmitter can see a point p ∈ P if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k -Transmitters ( ST k ) problem, the objective is to guard P with the minimum number of sliding k -transmitters. In this paper, we give a constant-factor approximation algorithm for the ST k problem on P for any fixed k ≥ 0 . Moreover, we show that the ST 0 problem is NP -hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For k > 0 , the problem is NP -hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P .
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-018-0433-6