Cartan Theorems for Stein Manifolds Over a Discrete Valuation Base
Let X be a complex manifold, let A be a topological discrete valuation ring, and write for the sheaf of functions on X with values in A . We prove Cartan theorems A and B for coherent -modules, when X is a Stein manifold and A satisfies some requirements like being a nuclear direct limit of Banach a...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2019-01, Vol.29 (1), p.577-615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a complex manifold, let
A
be a topological discrete valuation ring, and write
for the sheaf of functions on
X
with values in
A
. We prove Cartan theorems A and B for coherent
-modules, when
X
is a Stein manifold and
A
satisfies some requirements like being a nuclear direct limit of Banach algebras. The result is motivated by questions in the work of the second author with Kashiwara in the proof of the codimension-three conjecture for holonomic microdifferential systems. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-018-0012-8 |