Cartan Theorems for Stein Manifolds Over a Discrete Valuation Base

Let X be a complex manifold, let A be a topological discrete valuation ring, and write for the sheaf of functions on X with values in A . We prove Cartan theorems A and B for coherent -modules, when X is a Stein manifold and A satisfies some requirements like being a nuclear direct limit of Banach a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2019-01, Vol.29 (1), p.577-615
Hauptverfasser: Taskinen, Jari, Vilonen, Kari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a complex manifold, let A be a topological discrete valuation ring, and write for the sheaf of functions on X with values in A . We prove Cartan theorems A and B for coherent -modules, when X is a Stein manifold and A satisfies some requirements like being a nuclear direct limit of Banach algebras. The result is motivated by questions in the work of the second author with Kashiwara in the proof of the codimension-three conjecture for holonomic microdifferential systems.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-018-0012-8