NiCoO^sub 2^@CMK-3 composite with nanosheets-mesoporous structure as an efficient oxygen reduction catalyst
Exploiting high efficient non-noble metal catalysts with low-cost and good stability for oxygen reduction reaction (ORR) is vital for fuel cells and metal-air batteries. In this work, we successfully constructed a novel nanosheets-shaped NiCoO2 hierarchical structure supported on CMK-3 support (i.e....
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-01, Vol.294, p.38 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploiting high efficient non-noble metal catalysts with low-cost and good stability for oxygen reduction reaction (ORR) is vital for fuel cells and metal-air batteries. In this work, we successfully constructed a novel nanosheets-shaped NiCoO2 hierarchical structure supported on CMK-3 support (i.e., NiCoO2@CMK-3 composite) via a facile hydrothermal method. Electrochemical characterization results reveal that the as-prepared NiCoO2@CMK-3 composite exhibits remarkable ORR electrocatalytic activity with a positive peak potential of 0.81 V (vs. RHE), an onset potential of 0.90 V (vs. RHE), a high current density of 4.10 mA cm−2 at 0.4 V, and a nearly four-electron reduction pathway, which are comparable to the state-of-the-art Pt/C catalyst with the same mass. In addition, the NiCoO2@CMK-3 composite possesses excellent methanol-tolerance and electrochemical stability, which are better than Pt/C. The outstanding performance confirms the NiCoO2@CMK-3 composite as a promising efficient ORR catalyst in fuel cells and metal-air batteries. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2018.10.060 |