Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems

In this paper, we propose a robust fractional-order proportional-integral &#x0028 FOPI &#x0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequaliti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2019-01, Vol.6 (1), p.268-277
Hauptverfasser: N Doye, Ibrahima, Salama, Khaled Nabil, Laleg-Kirati, Taous-Meriem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a robust fractional-order proportional-integral &#x0028 FOPI &#x0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities &#x0028 LMIs &#x0029 approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional &#x0028 FOP &#x0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2017.7510874