Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems
In this paper, we propose a robust fractional-order proportional-integral ( FOPI ) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequaliti...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2019-01, Vol.6 (1), p.268-277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a robust fractional-order proportional-integral ( FOPI ) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities ( LMIs ) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional ( FOP ) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system. |
---|---|
ISSN: | 2329-9266 2329-9274 |
DOI: | 10.1109/JAS.2017.7510874 |