Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage
Developing high volumetric capacity and long cycle-life anode materials for high-performance lithium-ion batteries (LIBs) still remains a great challenge. Herein, densely pillared holey-graphene block with high N-doping (P-NHG) has been successfully synthesized through thermal decomposition of (NH4)...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-02, Vol.142, p.327-336 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing high volumetric capacity and long cycle-life anode materials for high-performance lithium-ion batteries (LIBs) still remains a great challenge. Herein, densely pillared holey-graphene block with high N-doping (P-NHG) has been successfully synthesized through thermal decomposition of (NH4)6Mo7O24 in-between stacked GO sheets. The dense graphene building block processes a high packing density of 2.53 g cm−3, high nitrogen doping (19.2 at%), numerous holes on the graphene sheet, and ∼5 nm Mo2C nanoparticles as the pillars in-between the graphene sheets, facilitating rapid ion diffusion and storage and ensuring structural stability during Li ion storage. As a result, the P-NHG electrode can deliver high gravimetric capacity of 1221 mAh g−1 and ultrahigh volumetric capacity of 3089 mAh cm−3 at 0.1 A g−1, as well as excellent cyclability (713 mAh g−1/1803 mAh cm−3 after 300 cycles at 0.5 A g−1). The novel design of densely pillared holey-structure materials represents greatly improved properties such as superior cyclability, and high volumetric capacity for LIBs.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2018.10.070 |