The number of limit cycles bifurcating from the periodic orbits of an isochronous center
This paper concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quintic homogeneous perturbations, at most 14 limit cycles birfucate from the period annulus of the considered system.
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-02, Vol.42 (3), p.821-829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quintic homogeneous perturbations, at most 14 limit cycles birfucate from the period annulus of the considered system. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.5385 |