Spheres as Frobenius objects
Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional c...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2018-01, Vol.33 (42), p.691 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 42 |
container_start_page | 691 |
container_title | Theory and applications of categories |
container_volume | 33 |
creator | Baralic, Djordje Petric, Zoran Telebakovic, Sonja |
description | Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2164127502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164127502</sourcerecordid><originalsourceid>FETCH-proquest_journals_21641275023</originalsourceid><addsrcrecordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42SQCS7ISC1KLVZILFZwK8pPSs3LLC1WyE_KSk0uKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQzMTQyNzUwMjY-JUAQDbGysE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164127502</pqid></control><display><type>article</type><title>Spheres as Frobenius objects</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Baralic, Djordje ; Petric, Zoran ; Telebakovic, Sonja</creator><creatorcontrib>Baralic, Djordje ; Petric, Zoran ; Telebakovic, Sonja</creatorcontrib><description>Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebra ; Dimensional analysis ; Field theory ; Mathematical analysis ; Mathematics ; Matrix methods ; Quantum field theory ; Quantum theory ; Spheres</subject><ispartof>Theory and applications of categories, 2018-01, Vol.33 (42), p.691</ispartof><rights>Copyright R. Rosebrugh 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Baralic, Djordje</creatorcontrib><creatorcontrib>Petric, Zoran</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><title>Spheres as Frobenius objects</title><title>Theory and applications of categories</title><description>Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.</description><subject>Algebra</subject><subject>Dimensional analysis</subject><subject>Field theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrix methods</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Spheres</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDIw1DU1M4zgYOAqLs4yMDAyMjMx42SQCS7ISC1KLVZILFZwK8pPSs3LLC1WyE_KSk0uKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQzMTQyNzUwMjY-JUAQDbGysE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Baralic, Djordje</creator><creator>Petric, Zoran</creator><creator>Telebakovic, Sonja</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20180101</creationdate><title>Spheres as Frobenius objects</title><author>Baralic, Djordje ; Petric, Zoran ; Telebakovic, Sonja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21641275023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Dimensional analysis</topic><topic>Field theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrix methods</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baralic, Djordje</creatorcontrib><creatorcontrib>Petric, Zoran</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baralic, Djordje</au><au>Petric, Zoran</au><au>Telebakovic, Sonja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spheres as Frobenius objects</atitle><jtitle>Theory and applications of categories</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>33</volume><issue>42</issue><spage>691</spage><pages>691-</pages><eissn>1201-561X</eissn><abstract>Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2018-01, Vol.33 (42), p.691 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2164127502 |
source | EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Algebra Dimensional analysis Field theory Mathematical analysis Mathematics Matrix methods Quantum field theory Quantum theory Spheres |
title | Spheres as Frobenius objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spheres%20as%20Frobenius%20objects&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Baralic,%20Djordje&rft.date=2018-01-01&rft.volume=33&rft.issue=42&rft.spage=691&rft.pages=691-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2164127502%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164127502&rft_id=info:pmid/&rfr_iscdi=true |