Spheres as Frobenius objects

Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2018-01, Vol.33 (42), p.691
Hauptverfasser: Baralic, Djordje, Petric, Zoran, Telebakovic, Sonja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.
ISSN:1201-561X