The standard Laplace operator
The standard Laplace operator is a generalization of the Hodge Laplace operator on differential forms to arbitrary geometric vector bundles, alternatively it can be seen as generalization of the Casimir operator acting on sections of homogeneous vector bundles over symmetric spaces to general Rieman...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2019-01, Vol.158 (1-2), p.273-293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The standard Laplace operator is a generalization of the Hodge Laplace operator on differential forms to arbitrary geometric vector bundles, alternatively it can be seen as generalization of the Casimir operator acting on sections of homogeneous vector bundles over symmetric spaces to general Riemannian manifolds. Stressing the functorial aspects of the standard Laplace operator
Δ
with respect to the category of geometric vector bundles we show that the standard Laplace operator commutes not only with all homomorphisms, but also with a large class of natural first order differential operators between geometric vector bundles. Several examples are included to highlight the conclusions of this article. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-018-1023-2 |