The standard Laplace operator

The standard Laplace operator is a generalization of the Hodge Laplace operator on differential forms to arbitrary geometric vector bundles, alternatively it can be seen as generalization of the Casimir operator acting on sections of homogeneous vector bundles over symmetric spaces to general Rieman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2019-01, Vol.158 (1-2), p.273-293
Hauptverfasser: Semmelmann, Uwe, Weingart, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The standard Laplace operator is a generalization of the Hodge Laplace operator on differential forms to arbitrary geometric vector bundles, alternatively it can be seen as generalization of the Casimir operator acting on sections of homogeneous vector bundles over symmetric spaces to general Riemannian manifolds. Stressing the functorial aspects of the standard Laplace operator Δ with respect to the category of geometric vector bundles we show that the standard Laplace operator commutes not only with all homomorphisms, but also with a large class of natural first order differential operators between geometric vector bundles. Several examples are included to highlight the conclusions of this article.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-018-1023-2