Frequency Response Characterization of a Sonoluminescence Acoustic Resonator by Using a FPGA-Based Instrumentation

Sonoluminescence (SL) is a physicochemical phenomenon that is observed when a single or multiple air bubbles, excited by an acoustic field in water, collapse and emit light. Until nowadays, it is still an outstanding phenomenon in which acoustic energy is (partially) transformed into light. Along th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of control, automation & electrical systems automation & electrical systems, 2019-02, Vol.30 (1), p.104-112
Hauptverfasser: de Barros, Ana L. F., Samyn, Leandro M., Sobral, Jhonatan S., Zachi, Alessandro R. L., Almeida, Luciana F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sonoluminescence (SL) is a physicochemical phenomenon that is observed when a single or multiple air bubbles, excited by an acoustic field in water, collapse and emit light. Until nowadays, it is still an outstanding phenomenon in which acoustic energy is (partially) transformed into light. Along the years, some models have been proposed to explain sonoluminescence and a lot of experimental setups have been built in an attempt to reproduce and study it. Since the flash of light is forced to occur inside a resonant cavity (i.e., a glass flask filled with water) by using external circuitry, many efforts have been made to study the relationship between the phenomenon and the electrical and mechanical quantities involved in the experimental apparatus. Following this field of study, this paper proposes an electronic instrumentation system based on a FPGA device for performing automatic monitoring of the input signal applied to the resonator as well as the output response signal produced by it. The objective of using the automated setup is to collect data for characterizing the resonator frequency response in order to identify its input/output behavior. The key idea is to find out whether there is a linear circuit which might have analogous input/output characteristics that may be used to simulate the phenomenon in future studies.
ISSN:2195-3880
2195-3899
DOI:10.1007/s40313-018-00431-0