Integrable 3D Statistical Models on Six-Valent Graphs
The paper is devoted to the study of a special statistical model on graphs with vertices of degrees 6 and 1. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a 2-knot. Our approach is based on the properti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2018-08, Vol.302 (1), p.198-216 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper is devoted to the study of a special statistical model on graphs with vertices of degrees 6 and 1. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a 2-knot. Our approach is based on the properties of the tetrahedron cohomology complex. |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S008154381806010X |