Polynomial Lie Algebras and Growth of Their Finitely Generated Lie Subalgebras

The concept of polynomial Lie algebra of finite rank was introduced by V. M. Buchstaber in his studies of new relationships between hyperelliptic functions and the theory of integrable systems. In this paper we prove the following theorem: the Lie subalgebra generated by the frame of a polynomial Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2018-08, Vol.302 (1), p.298-314
1. Verfasser: Millionshchikov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of polynomial Lie algebra of finite rank was introduced by V. M. Buchstaber in his studies of new relationships between hyperelliptic functions and the theory of integrable systems. In this paper we prove the following theorem: the Lie subalgebra generated by the frame of a polynomial Lie algebra of finite rank has at most polynomial growth. In addition, important examples of polynomial Lie algebras of countable rank are considered in the paper. Such Lie algebras arise in the study of certain hyperbolic partial differential equations, as well as in the construction of self-similar infinite-dimensional Lie algebras (such as the Fibonacci algebra).
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543818060159