Some sharp bounds for Steklov eigenvalues

This work is an extension of a result given by Kuttler and Sigillito (SIAM Rev \(10\):\(368-370\), \(1968\)) on a star-shaped bounded domain in \(\mathbb{R}^2\). Let \(\Omega\) be a star-shaped bounded domain in a hypersurface of revolution, having smooth boundary. In this article, we obtain a sharp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Verma, Sheela, Santhanam, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is an extension of a result given by Kuttler and Sigillito (SIAM Rev \(10\):\(368-370\), \(1968\)) on a star-shaped bounded domain in \(\mathbb{R}^2\). Let \(\Omega\) be a star-shaped bounded domain in a hypersurface of revolution, having smooth boundary. In this article, we obtain a sharp lower bound for all Steklov eigenvalues on \(\Omega\) in terms of the Steklov eigenvalues of the largest geodesic ball contained in \(\Omega\) with the same center as \(\Omega\). We also obtain similar bounds for all Steklov eigenvalues on star-shaped bounded domain in paraboloid, \(P = \left\lbrace (x, y, z) \in \mathbb{R}^{3} : z = x^2 + y^2\right\rbrace\).
ISSN:2331-8422