Absence of Charge Transfer State Enables Very Low VOC Losses in SWCNT:Fullerene Solar Cells

Current state‐of‐the‐art organic solar cells (OSCs) still suffer from high losses of open‐circuit voltage (VOC). Conventional polymer:fullerene solar cells usually exhibit bandgap to VOC losses greater than 0.8 V. Here a detailed investigation of VOC is presented for solution‐processed OSCs based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-01, Vol.9 (1), p.n/a
Hauptverfasser: Classen, Andrej, Einsiedler, Lukas, Heumueller, Thomas, Graf, Arko, Brohmann, Maximilian, Berger, Felix, Kahmann, Simon, Richter, Moses, Matt, Gebhard J., Forberich, Karen, Zaumseil, Jana, Brabec, Christoph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current state‐of‐the‐art organic solar cells (OSCs) still suffer from high losses of open‐circuit voltage (VOC). Conventional polymer:fullerene solar cells usually exhibit bandgap to VOC losses greater than 0.8 V. Here a detailed investigation of VOC is presented for solution‐processed OSCs based on (6,5) single‐walled carbon nanotube (SWCNT): [6,6]‐phenyl‐C71‐butyric acid methyl ester active layers. Considering the very small optical bandgap of only 1.22 eV of (6,5) SWCNTs, a high VOC of 0.59 V leading to a low Egap/q − VOC = 0.63 V loss is observed. The low voltage losses are partly due to the lack of a measurable charge transfer state and partly due to the narrow absorption edge of SWCNTs. Consequently, VOC losses attributed to a broadening of the band edge are very small, resulting in VOC,SQ − VOC,rad = 0.12 V. Interestingly, this loss is mainly caused by minor amounts of SWCNTs with smaller bandgaps as well as (6,5) SWCNT trions, all of which are experimentally well resolved employing Fourier transform photocurrent spectroscopy. In addition, the low losses due to band edge broadening, a very low voltage loss are also found due to nonradiative recombination, ΔVOC,nonrad = 0.26 V, which is exceptional for fullerene‐based OSCs. The absence of a charge transfer (CT) state is found in the (6,5) single‐walled carbon nanotube:PC70BM system and a detailed analysis of the open‐circuit voltage (VOC) is reported. The analysis reveals that the lack of the CT state enables very small radiative as well as nonradiative VOC losses for an organic cell, despite the ultranarrow bandgap of this system.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201801913